Density wave instabilities of fractionalized Fermi liquids

نویسندگان

  • Debanjan Chowdhury
  • Subir Sachdev
چکیده

Recent experiments in the underdoped regime of the hole-doped cuprates have found evidence for an incommensurate charge density wave state. We present an analysis of the charge ordering instabilities in a metal with antiferromagnetic correlations, where the electronic excitations are coupled to the fractionalized excitations of a quantum fluctuating antiferromagnet on the square lattice. The resulting charge density wave state emerging out of such a fractionalized Fermi-liquid (FL*) has wavevectors of the form (±Q0, 0), (0,±Q0), with a predominantly d-form factor, in agreement with experiments on a number of di↵erent families of the cuprates. In contrast, as previously shown, the charge density wave instability of a nearly antiferromagnetic metal with a large Fermi surface, interacting via short-range interactions, has wavevectors of the type (±Q0,±Q0). Our results show that the observed charge density wave appears as a low-energy instability of a fractionalized metallic state linked to the proximity to an antiferromagnetic insulator, and the pseudogap regime can be described by such a metal at least over intermediate length and energy scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confinement transition to density wave order in metallic doped spin liquids

Insulating quantum spin liquids can undergo a confinement transition to a valence bond solid via the condensation of topological excitations of the associated gauge theory. We extend the theory of such transitions to fractionalized Fermi liquids (FL*): these are metallic doped spin liquids in which the Fermi surfaces only have gauge neutral quasiparticles. Using insights from a duality transfor...

متن کامل

Holographic metals and the fractionalized fermi liquid.

We show that there is a close correspondence between the physical properties of holographic metals near charged black holes in anti-de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the lattice Anderson model. The latter phase has a "small" Fermi surface of conduction electrons, along with a spin liquid of local moments. This correspondence implies that certain mean-field gapl...

متن کامل

ar X iv : 1 00 6 . 37 94 v 3 [ he p - th ] 10 A ug 2 01 0 Holographic metals and the fractionalized Fermi liquid

We show that there is a close correspondence between the physical properties of holographic metals near charged black holes in anti-de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the lattice Anderson model. The latter phase has a ‘small’ Fermi surface of conduction electrons, along with a spin liquid of local moments. This correspondence implies that certain mean-field gapl...

متن کامل

Metals in high magnetic field: a new universality class of Fermi liquids

Parquet equations, describing the competition between superconducting and density-wave instabilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the lowest Landau level is filled. In the case of a repulsive interaction between electrons, a phase transition to the density-wave state is found at finite temperature. In the opposite case of attractive inte...

متن کامل

ar X iv : c on d - m at / 0 30 51 93 v 2 1 3 O ct 2 00 3 Weak magnetism and non - Fermi liquids near heavy - fermion critical points

This paper is concerned with the weak-moment magnetism in heavy-fermion materials and its relation to the non-Fermi liquid physics observed near the transition to the Fermi liquid. We explore the hypothesis that the primary fluctuations responsible for the non-Fermi liquid physics are those associated with the destruction of the large Fermi surface of the Fermi liquid. Magnetism is suggested to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015